YOUNGMAN

BoSS Ladderspan User Guide

Mobile Aluminium Tower 1450/850 Ladderspan

3T - Through the Trapdoor Method

INSTRUCTION MANUAL

Safety First
 Mobile Towers - 3T Method
 INTRODUCTION

Please read this manual carefully.
Please note that diagrams are for illustrative purposes only.
User guides are also available to download from our website at youngmangroup.com

BoSS mobile aluminium towers are light-weight scaffold towers used throughout the building and construction industry for both indoor and outdoor access solutions where a stable and secure platform is required. Ideal for maintenance and installation work or short-term access, the highly versatile towers provide a strong working platform for a variety of heights.

This Instruction Manual provides you with step by step instructions to ensure your system is assembled easily and safely, using the 3T (Through The Trapdoor) method.

The law requires that personnel erecting, dismantling or altering towers must be competent. Any person erecting a Youngman BoSS mobile tower must have a copy of this guide. For further information on the use of mobile access and working towers consult the PASMA operators ' code of practice.

If you need further information, design advice, additional guides or any other help with this product, please contact Youngman on +91-9015964626 or email sales@youngman.co.in.

COMPLIANCES

The BoSS Ladderspan aluminium system has been tested and certified to EN 1004: 2004 Class 3

Instruction Manual EN 1298-IM-EN

PREPARATION AND INSPECTION

Inspect the equipment before use to ensure that it is not damaged and that it functions properly. Damaged or incorrect components shall not be used.

Safety First

SAFE USE

- Che ck that all components are on sit e, undamaged and th at they are functioning co rrectly - (re fer to Che cklist and Quantity Schedules). Damaged or inco rrect components shall not be used.
- Che ck if the ground on which the mobile access tower is to be erected and m oved is capa ble of suppo r ting the tower.
- The sa fe working load is 275 kgs (606 lbs), per pl atform level, uniformly distri buted up to a maxi mum of 950 kgs (2100 lbs), per tower (in cluding sel f weight).
- Towers must a lways be climbed from the inside using the built in ladder during assem bly and us e.
- It is recommended th at towers should be tied to a solid structure when left un attended.
- Adjusta ble legs should on ly be used for levelling.

LIFTING OF EQUIPMENT

- Tower components should be lifted using a relia ble lifting material (e.g. strong rope), empl oying a relia ble knot (e.g. clove hitch), to ensure sa fe fastening and a lways lift within the footprint of the tower.
- Assem bled mobile towe rs should not be lifted with a crane or other lifting d evice.

Safety First

STABILISERS / BALLAST

- Stabilise rs or outri ggers and ballast weights shall a lways be fitted when specified.
- The Quantity S chedules show the recommended stabilis ation. In circumstances where there is restricted ground clearance for stabilise rs/outriggers, contact your supplier for a dvice. Ballast must be of solid m aterials (i. e. not water or loose sand) and should not be positioned to overload individual leg s. Ballast should be secured a gainst accidental rem oval where practica ble, and be suppo rted on the lowest rung of the bottom frame.

MOVEMENT

- The tower should on ly be m oved by ma nual effort, and on ly from the bas e.
- When moving the towe r, beware o f live electrical appar atus, particularly overhead, plus wires or m oving parts of ma chinery.
- No pe rson or m aterials should be on the tower during movement.
- Caution should be exercised when wheeling a tower over rough, un even or sloping ground, taking care to unlo ck and lock casto rs. If stabilise rs are fitted, th ey should on ly be lifted a maxi mum of 25 mm ab ove the ground to clear ground obstructions.
- The overall height of the tower when being m oved, should not exceed 2.5 times the mini mum base dimension s, or 4 metres overall height.
- Be fore use, check the tower is still co rrect and complet e.
- After every movement of the tower use a spirit I evel to check that it is vertical and I evel and set the adjusta ble legs as required.
- Do not move the tower in wind speeds over 7.7 metres per second (17 mph).

Safety First

DURING USE

- Beware o f high winds in exposed, gusty or medium bree ze conditions. We recommend th at in wind speeds over 7.7 metres per second (17 mph), cease wo rking on the tower and do not attempt to move it. If the wind becomes a strong bree ze, expected to rea ch 11.3 metres per second (25 mph), tie the tower to a rigid st ructure. If the wind is li kely to rea ch gale force, over 18 metres per second (40 mph), the tower should be dismantled.

Wind Description	Beaufort Scale	Beaufort No.	Speed in m.p.h	Speed in m/sec
Medium Bree ze	Raises dust and loose pape r, twigs snap o ff	4	$8-12$	$4-6$
Strong Bree ze Large bran ches in motion, telegraph wires whistle 6 $25-31$	$11-14$			
Gale Force	Walking is difficult	8	$39-46$	$17-21$

- Beware o f open ended buildings, which can cause funnelling effect.
- Do not a buse equipment. Damaged or inco rrect components shall not be used.
- Raising and lowering component s,tools, and/or m aterials by rope should be conducted within the lower bas e. Ensure th at the sa fe working load of the suppo rting de cks and the tower structure is not exceeded.
- The assem bled tower is a wo rking platform and should not be used as a means o f access or egress to other st ructures.
- Beware o f horizontal forces (e.g. power tools) which could gener ate instability. Maximum horizontal force 20 kg.
- The stairw ay towers, featuring an in clined staircase acces s, are for frequent use by pe rsonnel ca rrying tools and/or m aterials.
- Mobile towe rs are not designed to be suspended - please refer to your supplier for a dvice.
- Do not use b oxes or stepladde rs or other objects on the platform to gain extra height.

Safety First

TIES

- Ties should be used when the tower goes b eyond its sa fe height, b eyond the limits of the stabilise rs /outriggers, or if there is a danger o f instability. They should be rigid, two w ay ties fastened to both uprights o f the frame with load-bearing right angled or swivel couple rs. On ly couple rs suita ble for the 50.8 mm diameter tube o f the tower should be used. Ideal ly, ties should be secured to both faces o fa solid st ructure by means of an chorages.
- The tie frequen cy may vary depending on the applic ation, but they should, at a minimum, be every 4 metres height.
- For further information on tying-in a tower please contact your supplier or Youngman.

MAINTENANCE - STORAGE - TRANSPORT

- All components and their pa rts should be regula rly inspected to identify damag e, pa rticularly to joints. Lost or bro ken pa rts should be replaced, and a ny tubing with indent ation greater than 5 mm should not be used and put to one side for manufacture repai r. Adjusta ble leg threads should be cleaned and light ly lubric ated to keep them free running.
- Brace claws, frame inte rlock clips, trapdoor I atches and platform windlocks should be regula rly checked to ensure th ey lock co rrectly.
- Refer to the BoSS Inspection Ma nual for detailed inspection and maintenance a dvice
- Components should be stored with due care to pr event damage.
- Ensure components are not damaged by excessi ve strapping forces when transpo rted.

Safety First

Quantity Schedule 1450 Width Towers
BoSS 1450 Ladderspan to EN 1004: Available in 2 lengths - 1.8 m and 2.5 m
Internal/External Use - Towers under 2.5m are outside of the scope of EN1004

Inter																			Inter	nal U			
COMPONENT WORKINGHEIGHT (m) PLATFORM HEIGHT (m)	$\begin{aligned} & 3.2 \\ & 1.2 \end{aligned}$	$\begin{aligned} & 3.7 \\ & 1.7 \end{aligned}$	$\begin{aligned} & 4.2 \\ & 2.2 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 2.7 \end{aligned}$	$\begin{aligned} & 5.2 \\ & 3.2 \end{aligned}$	$\begin{aligned} & 5.7 \\ & 3.7 \end{aligned}$	$\begin{aligned} & 6.2 \\ & 4.2 \end{aligned}$	$\begin{aligned} & 6.7 \\ & 4.7 \end{aligned}$	$\begin{array}{\|l\|} \hline 7.2 \\ 5.2 \end{array}$	$\begin{aligned} & 7.7 \\ & 5.7 \end{aligned}$	$\begin{aligned} & 8.2 \\ & 6.2 \end{aligned}$	$\begin{aligned} & 8.7 \\ & 6.7 \end{aligned}$	$\begin{aligned} & 9.2 \\ & 7.2 \end{aligned}$	$\begin{aligned} & 9.7 \\ & 7.7 \end{aligned}$	$\begin{gathered} 10.2 \\ 8.2 \end{gathered}$	$\begin{gathered} 10.7 \\ 8.7 \end{gathered}$	$\begin{gathered} 11.2 \\ 9.2 \end{gathered}$	$\begin{gathered} 11.7 \\ 9.7 \end{gathered}$	$\begin{aligned} & 12.2 \\ & 10.2 \end{aligned}$	$\begin{aligned} & 12.7 \\ & 10.7 \end{aligned}$	$\begin{aligned} & 13.2 \\ & 11.2 \end{aligned}$	$\begin{aligned} & 13.7 \\ & 11.7 \end{aligned}$	$\begin{aligned} & 14.2 \\ & 12.2 \end{aligned}$
125/150/200mm Castor	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Adjusta ble leg assem bly	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
14502 Rung Ladder Frame		1	1			1	1			1	1			1	1			1	1			1	1
14502 Rung Span Frame		1	1			1	1			1	1			1	1			1	1			1	1
14503 Rung Ladder Frame		1		1		1		1		1		1		1		1		1		1		1	
14503 Rung Span Frame		1		1		1		1		1		1		1		1		1		1		1	
14504 Rung Ladder Frame	1		1	1	2	1	2	2	3	2	3	3	4	3	4	4	5	4	5	5	6	5	6
14504 Rung Span Frame	1		1	1	2	1	2	2	3	2	3	3	4	3	4	4	5	4	5	5	6	5	6
1.8 m and 2.5 m Fi xed Deck	1	1	1*	2	1	1	1	2	1	1	1	2	1	1	1	2	1	1	1	2	1	1	1
1.8 m and 2.5 m Trap Door De ck	1	1	1	1	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6	6	6
1.8 m and 2.5 m Hori zontal Brace (red)	6	6	6	6	10	10	10	10	14	14	14	14	18	18	18	18	22	22	22	22	26	26	26
2.1 m and 2.7m Diagonal Brace(blue)	2	3	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23

[^0]
Quantity Schedule 1450 Width Towers

BoSS 1450 Ladderspan to EN 1004: Available in 2 lengths -1.8 m and 2.5 m

응	\sim	+	+	\%	m

Internal/External Use
See pages 10 and 30 for stabiliser position s.

Quantity Schedule
 1450 Width Towers

NUMBER OF WORKING PLATFORMS ALLOWED

The MAXIMUM SAFE WORKING LOAD (the combined weight of the use $r s$, tools and m aterials) th at may be placed on the tower is the total weight less the sel f weight of the tower. The total weight for the towers shown in the s chedule is 950 kg .

Example 1:

A 1450 tower built using the 3T method with a 4.2 m pl atform height and a pl atform length of 1.8 m has a sel f weight of 175 kg .
$950 \mathrm{~kg}-180 \mathrm{~kg}=775 \mathrm{~kg}$ maximum safe working load
total weight sel f weight (users, tools and materials)

Example 2:

A 1450 tower built using the 3 T method with a 11.7 m pl atform height and a pl atform length of 2.5 m has a sel f weight of 436 kg .
$950 \mathrm{~kg}-436 \mathrm{~kg}=514 \mathrm{~kg}$ maximum safe working load total weight sel f weight (users, tools and materials)

For gre ater heights and load s, consult Youngman for guidance.

PLATFORM LOADING

On a 1450 tower a pl atform may comprise o fa single de ck or two decks placed side by side. The maxi mum sa fe working load (the combined weight o f the use $r s$, tools and m aterials) th at may be placed on a pl atform is 275 kg . This must be evenly distri buted over either one de ck, or two de cks placed side by sid e.

The quantities on pages 7 and 8 , will ena ble BoSS towe r to be built sa fely and there fore comp ly with the requirements o f the Work at Height Regulations. They include dou ble guardrails to all pl atforms, and to eboards will need to be added $i f$ a ny levels are used as wo rking platforms and for storage of materials. EN 1004 requires pl atforms at least every 4.2 m , and these measures will exceed th at requirement.

Quantity Schedule
 1450 Width Towers

BALLAST: Internal/External Use

There is no requirement for ballast on 1450 towe rs if using stabilise rs as detailed in the ta ble on page 8.

MOBILE OUTRIGGERS

MP16 outri ggers can be used instead o f SP15 stabilise rs, as detailed belo w. Mobile outri gger kits comprise:

Mobile Outrigger Kit	
MP16 Mobile Outri gger	4
125/150/200mm Castor (Use same diameter casto rs as on tower)	4
250 mm Adjusta ble leg	4
Plan Braces	4
The ab ove components replace:	4
SP15 Stabiliser	

STABILISERS

To improve rigidit y, larger stabilise rs can be used at a lower I evel than shown in the ta ble on page 8.

Angle of Stabiliser 1450 TOWER

Double width 1450 Towers Dimension X

	Platform Length 1.8 m	Platform Length 2.5 m
SP7	$X=3351$	$X=3629$
SP10	$X=4789$	$X=5100$
SP15	$X=5520$	$X=5838$

Stabiliser feet should form a square as shown in the diagram and table above.

Quantity Schedule 850 Width Towers
BoSS 850 Ladderspan to EN 1004: Available in 2 lengths -1.8 m and 2.5 m

Internal/External Use - Tow																Internal Use							
COMPONENTWORKING HEIGHT (m) PLATFORM HEIGHT (m)	$\begin{aligned} & 3.2 \\ & 1.2 \end{aligned}$	$\begin{array}{\|l\|} \hline 3.7 \\ 1.7 \\ \hline \end{array}$	$\begin{array}{\|l} 4.2 \\ 2.2 \\ \hline \end{array}$	$\begin{aligned} & 4.7 \\ & 2.7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 5.2 \\ 3.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 5.7 \\ 3.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.2 \\ 4.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 6.7 \\ 4.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7.2 \\ 5.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 7.7 \\ 5.7 \\ \hline \end{array}$	$\begin{array}{\|l} 8.2 \\ 6.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 8.7 \\ 6.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9.2 \\ 7.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 9.7 \\ 7.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 10.2 \\ 8.2 \\ \hline \end{array}$	$\begin{aligned} & 10.7 \\ & 8.7 \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \hline 11.2 \\ 9.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 11.7 \\ 9.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 12.2 \\ 10.2 \\ \hline \end{array}$	$\begin{array}{\|l} \hline 12.7 \\ 10.7 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13.2 \\ 11.2 \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline 13.7 \\ 11.7 \\ \hline \end{array}$	$\begin{aligned} & 14.2 \\ & 12.2 \\ & \hline \end{aligned}$
125/150/200mm Castor	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
Adjusta ble leg assem bly 4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4	4
8502 Rung Ladder Frame		1	1			1	1			1	1			1	1			1	1			1	1
8502 Rung Span Frame		1	1			1	1			1	1			1	1			1	1			1	1
8503 Rung Ladder Frame		1		1		1		1		1		1		1		1		1		1		1	
8503 Rung Span Frame		1		1		1		1		1		1		1		1		1		1		1	
8504 Rung Ladder Frame	1		1	1	2	1	2	2	3	2	3	3	4	3	4	4	5	4	5	5	6	5	6
8504 Rung Span Frame	1		1	1	2	1	2	2	3	2	3	3	4	3	4	4	5	4	5	5	6	5	6
1.8 m and 2.5 m Trap Door De ck	1	1	1*	2	2	2	2	3	3	3	3	4	4	4	4	5	5	5	5	6	6	6	6
1.8 m and 2.5 m Hori zontal Brace (red)	6	6	6	6	10	10	10	10	14	14	14	14	18	18	18	18	22	22	22	22	26	26	26
2.1 m and 2.7 m Diagonal Brace (blue)	2	3	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23
1.8 m and 2.5 m Side Toeboard	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2	2

IMPORTANT: Please ensure you also read the Quantity Schedule on page 12.

* If you are una ble to pos ition the working platform easily from the ground, you may require an additional fixed platform for this tower height.

Quantity Schedule 850 Width Towers

○\％～	＋				인	
万人⿵入	＋		－		$\stackrel{\sim}{\sim}$	
สู̃～	－		＊		\sim	
	－		＊		\％	
¢ ¢ \％～	－		－		$\stackrel{\square}{\circ}$	
元会～	－		－		\％	
～～～	－	－			$\stackrel{\square}{\square}$	
故～	＋	－			N	
¢゙フ \sim	＋	＋			5	
へiल m	＋	＋			9	
ֹึ่ ¢ึ～	＋	＋			$\stackrel{\text { \％}}{ }$	
¢in	＋	－			$\stackrel{\square}{\circ}$	
ブ ત̃～	＋	－			$\stackrel{\circ}{\circ}$	
	－				－	
¢ึำ～	＊				N	

See pages 14 and 30 for stabiliser positions．

Quantity Schedule
 850 Width towers
 NUMBER OF WORKING PLATFORMS ALLOWED

The MAXIMUM SAFE WORKING LOAD (the combined weight of the use $r s$, tools and m aterials) th at may be placed on the tower is the total weight less the sel f weight of the tower. The total weight for the towers shown in the s chedule is 950 kg .

Example 1:

An 850 tower built using the 3T method with a 4.2 m pl atform height and a pl atform length of 1.8 m has a sel f weight of 151 kg .
$950 \mathrm{~kg}-151 \mathrm{~kg}=799 \mathrm{~kg}$ maximum safe working load total weight sel f weight (users, tools and materials)

Example 2:

An 850 tower built using the 3 T method with a 11.7 m pl atform height and a pl atform length of 2.5 m has a sel f weight of 408 kg .
$950 \mathrm{~kg}-410 \mathrm{~kg}=540 \mathrm{~kg}$ maximum safe working load total weight sel f weight (users, tools and materials)

For gre ater heights and load s, consult Youngman for guidance.

PLATFORM LOADING

On an 850 tower a pl atform comprises o fasingle de ck only. The maximum sa fe working load (the combined weight o f the use rs, tools and m aterials) th at may be placed on a pl atform is 275 kg , evenly distri buted over the de ck.

The quantities on pages 11 and 12, will ena ble BoSS towe rs to be built sa fely and there fore comp ly with the requirements o f the Work at Height Regulations 2005. They include dou ble guardrails to all pl atforms, and to eboards will need to be added $i \quad f$ a ny levels are used as wo rking platforms and for storage o f materials. EN 1004 requires pl atforms at least every 4.2 m , and these measures will exceed th at requirement.

Quantity Schedule
 850 Width Towers

BALLAST: Internal/External Use

There is no requirement for ballase on 850 towe rs if using stabilise rs as detailed in the ta ble on page 12

MOBILE OUTRIGGERS

MP16 mobile outri ggers can be used instead o f SP15 telescopic stabilise rs respecti vely, as detailed belo w. Mobile outri gger kits comprise:

Mobile Outrigger Kit

MP16 Mobile Outri gger	4
125/150/200mm Castor (Use same diameter casto rs as on tower)	4
250mm Adjusta ble leg	4
Plan Braces	4
The ab ove components replace:	4
SP15 Stabiliser	

STABILISERS

To improve rigidity, larger stabilise rs can be used at a lower I evel than shown in the ta ble on page 12.

Single Width 850 Towers Dimension X

	Platform Length 1.8 m	Platform Length 2.5 m
SP7	$\mathrm{X}=2994$	$\mathrm{X}=3201$
SP10	$\mathrm{X}=4458$	$\mathrm{X}=4734$
SP15	$\mathrm{X}=5195$	$\mathrm{X}=5485$

Stabiliser feet should form a square as shown in the diagram and table above.

Assembly Procedure

Mobile Towers - 3T Method

ASSEMBLY AND DISMANTLING PROCEDURES

When building a BoSS Tower:

- To comp ly with the Work at Height Regulations we show assem bly procedures with pl atforms every 2 metres in height, and, the loc ating of guardrails in a dvance of climbing onto a platform to reduce the risk o f a fall.
- All platforms feature double guardrails on both faces o f either individual pl atforms or fully de cked levels.
- All guardrails should be 1 and 2 rungs (0.5 m and 1.0 m) ab ove platforms.
- Never stand on an unguarded pl atform positioned ab ove the first rung of a towe r. If your risk assessment shows it necessa ry, you may also need to guardrail pl atforms at this level.
- Always start building with the smallest height frames at the base of the tower:

Platform Heights in Metres	Frame at base
$1.7,2.2,3.7,4.2,5.7,6.2,7.7,8.2,9.7,10.2,11.7,12.2$	2 rung
$2.7,4.7,6.7,8.7,10.7$	3 rung
$1.2,3.2,5.2,7.2,9.2,11.2$	4 rung

Where all 3 frame heights are used in a tower, start with 2 rung frames at the base, with the 3 rung frames next and the 4 rung frames on the top. Refer to the quantity schedules for detail.

TO DISMANTLE A BoSS LADDERSPAN TOWER

- Remove toeboards, and pass down the towe r.
- Unclip farthest end o f braces and immedi ately go to protected trapdoor position on ladder to complete rem oval.
- Remove upper pl atforms from protected pl atform levels belo w.
- Pass rem oved components out o f the tower to a colleagu e.

Safety Checklist

Mobile Towers - 3T Method
CHECKLIST

Ensure all b race claws o perate a nd lock correctly prior to erection	\checkmark
Inspect components prior to erection	\checkmark
Inspect tower prior to use	\checkmark
Tower upright and I evel	\checkmark
Casto rs lo cked and legs co rrectly adjusted	\checkmark
Diagonal braces fitted	\checkmark
Stabilise rs/outriggers fitted as specified	\checkmark
Platforms loc ated and windlo cks on	\checkmark
Toeboards loc ated	\checkmark
Che ck guardrails are fitted co rrectly. See illustr ation below.	\checkmark

Assembly Procedure

Mobile Towers - 1450 3T Method
 ASSEMBLY FOR 1450 TOWERS

Always start building with the smallest height frames at the base of the tower:

Platform Heights in Metres	Frame at base
$1.7,2.2,3.7,4.2,5.7,6.2,7.7,8.2,9.7,10.2,11.7,12.2$	2 rung
$2.7,4.7,6.7,8.7,10.7$	3 rung
$1.2,3.2,5.2,7.2,9.2,11.2$	4 rung

Where all 3 frame heights are used in a tower, start with 2 rung frames at the base, with the 3 rung frames next and the 4 rung frames on the top. Refer to the Quantity Schedules for detail. The procedure illustrated shows 4.2 m platform height tower starting with a 2 rung frame.

Youngman recommend two persons are used to build BoSS Towers. Above 4 m height, it is essential that at least two persons are used. Only climb the tower from the inside.

Push castor into adjustable leg. Push Castor /adjustable leg assemblies into 2 rung span frame. Lock castors. Repeat procedure with 2 rung ladder frame.

It is recommended that for ease of levelling a gap of 50 mm is left between the bottom of the leg and the adjustable nut. Adjustable Legs are for levelling only. You must not adjust all four to gain extra height.

NB: Base plates can be fitted to adjustable legs in lieu of castors if it is not necessary to move the tower.

Assembly Procedure

2
Fit one hori zontal brace (red) onto the vertical of an span frame, just ab ove the bottom rung, with the claw facing outwards. The frame will now be self supporting.
Note: All locking claws must be opened before fitting.

3 Position the ladder frame as shown and fit the other end o f the horizontal brace on to the vertical, just ab ove the bottom rung. Fit a second hori zontal brace between the bottom rungs on the other side o f the frames to square the towe r.

Assembly Procedure

4
Fit 2 additional end frames ensuring the frame inte rlock clips are en gaged. Fit 2 diagonal braces (blue) in opposing direction s, between the 1st and the 3rd rungs. Ensure the frames are vertical and I evel by checking with a spirit I evel and setting the adjusta ble legs as required.

IMPORTANT - Only use the adjustable legs to level the tower and not to gain extra height.

Assembly Procedure

Fit a temporary deck on the lowest rungs. Fit a trapdoor deck on the 4th rung (2.0 m) with the trapdoor next to the ladder. Ensure the trapdoor is positioned with the hinges towards the outside of the tower as shown. Climb the ladder and, from the protected trapdoor position, fit guardrails on the 5th and 6th rungs (in that order) on both sides of the platform.

Do not climb onto the deck until it is fully guard-railed.
When horizontal braces are fitted as guardrails, they should be 0.5 m and 1.0 m (1 and 2 rungs) above the platform level in all cases.

Remove the temporary deck from the lowest rung

Assembly Procedure

6
Fit the next pair of diagonal braces in opposing directions between the 3rd and 5th rungs add 2 additional end frames.

7 Add two more diagonal braces between the 5th and 7th rungs. If finishing at this height (4.2 m platform),reposition the fixed deck to the 8th rung on the tower. Fit a trapdoor deck alongside it, with the hinges towards the outside of the tower, and the trapdoor next to the ladder. Add a single diagonal between the 7th and 9th rungs as shown. Climb up the ladder, and from the protected trapdoor position, fit the guardrails on the 9th and 10th rungs, in that order, on both sides of the tower.

Assembly Procedure

When building beyond a 4.2 m platform height.

8 Continue to add pairs of end frames, diagonal braces and fit trapdoor decks as shown in the previous steps. Add guardrails at 0.5 m and 1.0 m , (in that order), above the platform from the protected trapdoor position.
Do not climb onto the platform until it is fully guard-railed.

Continue until the required height is reached. Re-position the fixed deck to the required platform height and fit a trapdoor deck alongside it as shown in stage 7. Fit a single diagonal at the top of the tower as shown in stage 7. Fit the final guardrails as shown in stage 7.

Assembly Procedure

7
Fit toeboards (see Inst ructions on page 29). The tower is now complet e.

Dismantling Procedure

To take down the tower r everse the building sequenc e. When rem oving guardrail brace s, unlock the 4 claws furthest from the trapdoor and then retu rn immediately to the protected position within the trapdoo r. You may then unlo ck the claws at the other ends of the guardrails to rem ove them from the tower.

Assembly Procedure
 Mobile Towers - 850 3T Method
 ASSEMBLY FOR 850 TOWERS

Always start with the smallest height frames at the base of the tower:

Platform height in Metres	Frame at base.
$1.7,2.2,3.7,4.2,5.7,6.2,7.7,8.2,9.7,10.2,11.7,12.2$	2 Rung
$2.7,4.7,6.7,8.7,10,7$	3 Rung
$1.2,3.2,5.2,7.29 .2,11.2$	4 Rung

Where all 3 frame heights are used in a towe r, sta $r t$ with 2 rung frames at the bas e, with the 3 rung frames n ext and the 4 rung frames on the to p . Refer to the quantity s chedules for detail.

The procedure illustrated shows a 3.2 m platform height tower starting with an 4 rung frame.

Inse rt adjusta ble leg/castor assem blies into end frames and lock the casto rs, see diagram Step 1 (page 17). Base pl ates can be fitted to the adjusta ble legs i f it is not necessa ry to move the tower. Fit 2 hori zontal braces to the 850 end frames as shown in steps 2 and 3 for the 1450 tower procedure (page 18).

2
Fit a trapdoor de ck on the 2nd rung. Fix the hori zontal braces (red) as guardrails on the 3rd and 4th rungs (2 and 4 rungs ab ove the pl atform) on both sides o f the tower.

Assembly Procedure

3 Fit 2 diagonal braces in opposing directions between the 1st and 3rd rungs. Ensure the frames are vertical and I evel by checking with a spirit I evel and setting the adjusta ble legs as necessa ry. Fit stabilise rs (see notes on page 30). Fit the n ext pair of end frames and check the frame inte rlock clips are en gaged.

IMPORTANT. Only use the adjustment on the legs to level the tower and not to gain extra height.

Assembly Procedure

Assembly Procedure

5 Climb up the inside o f the tower and from the protected position of the trapdoo r, fit guardrails to the 7 th and 8th rungs, (in th at order), on both sides o f the tower.

Assembly Procedure

6 Continue the procedure until the required wo rking height is rea ched, adding additional pai rs of end frame s, diagonal braces and fitting trapdoor pl atforms, as shown on pr evious step s. At every platform level, add hori zontal braces as guardrails from the protected position within the trapdoo r, (as shown in step 5).

Fit a single diagonal at the top of the tower as shown.
Fit the to eboards (see inst ruction on page 29).
The tower is now complet e.

Dismantling Procedure

To take down the tower r everse the building sequence. When rem oving guardrail brace s, unlock the 4 claws furthest from the trapdoor and then retu rn immediately to the protected position within the trapdoo r. You may then unlock the claws at the other ends o f the guardrails to rem ove them from the tower.

Toeboards
 Mobile Towers - 3T Method
 FITTING TOEBOARDS

Lock yellow plastic to eboard clips over rung and de ck claw as shown. Position as (A) on right hand de ck claw. On other side of the working platform, position the clip as (B). Place 25 mm thi ck toeboards into slots in to eboard clips as shown.

Stabilisers and Outriggers
 Mobile Towers - 3T Method
 STABILISERS

Attach one stabiliser to each corner of the tower as shown. Ensure stabiliser feet are equal ly spaced to form a squar e.

SP10 and SP15 telescopic stabilise rs must a lways be ful ly extended.
Position the lower clamp so th at the lower a rm is as close to the horizontal as possi ble. Adjust the position o f the top clamp to ensure the stabiliser foot is in firm contact with the ground. Ensure clamps are secur e.

Stabilise r s are used when the tower is to be m oved occasional ly, frequent m ovement will require mobile outri ggers.

When moving the towe r, adjust the top clamps to lift the four stabiliser feet a maxi mum of 25 mm off the ground and then unlock the castor bra kes. After moving ensure all four stabiliser feet are repositioned in fi rm contact with the ground.

STABILISER DIMENSIONS

	\mathbf{y}
SP7	1227
SP10	2241
SP15	2757

OUTRIGGERS

For information on mobile outriggers please consult your supplier.

YOUNGMAN

For further information about this product or any other products and services, please contact:

Youngman India Pvt. Ltd
Plot 14 Ecotech 1 Ext Greater Noida, Uttar Pradesh, India, 201310
+91-9015964626
sales@youngman.co.in

[^0]: IMPORTANT: Please ensure you also read the Quantity Schedule on page 8.

 * If you are una ble to position the working platform easily from the ground, you may require an additional fi xed pl atform for this tower height.

